Buscador de publicaciones<< Volver

Costa TJ, Ceravolo GS, Dos Santos RA, de Oliveira MA, Araújo PX, Giaquinto LR, Tostes RC, Akamine EH, Fortes ZB, Dantas AP, Carvalho MH

Association of testosterone with estrogen abolishes the beneficial effects of estrogen treatment by increasing ROS generation in aorta endothelial cells.

Am. J. Physiol. Heart Circ. Physiol.. 2015 Apr;308(7):H723-32, PMID: 25637546

Testosterone has been added to hormone replacement therapy to treat sexual dysfunction in postmenopausal women. Whereas estrogen has been associated with vascular protection, the vascular effects of testosterone are contradictory and the effects of its association with estrogen are largely unknown. In this study we determined the effects of testosterone associated with conjugated equine estrogen (CEE) on vascular function using a model of hypertensive postmenopausal female: ovariectomized spontaneously hypertensive rats. Female spontaneously hypertensive rats were divided into sham-operated, ovariectomized (OVX), and OVX treated for 15 days with either CEE alone (OVX+CEE) or associated with testosterone (OVX+CEE+T). Angiotensin II (ANG II)-induced contraction was markedly increased in aortic rings from OVX compared with sham-operated rats. CEE treatment restored ANG-II responses, a beneficial effect abrogated with CEE+T. CEE treatment also increased endothelium-dependent relaxation, which was impaired in OVX rats. This effect was lost by CEE+T. Treatment of aortas with losartan (ANG-II type-1 receptor antagonist) or apocynin (NADPH-oxidase inhibitor) restored the endothelium-dependent relaxation in OVX and CEE+T, establishing an interplay between ANG-II and endothelial dysfunction in OVX and CEE+T. The benefits by CEE were associated with downregulation of NADPH-oxidase subunits mRNA expression and decreased reactive oxygen species generation. The association of testosterone with CEE impairs the benefits of estrogen on OVX-associated endothelial dysfunction and reactive oxygen species generation in rat aorta by a mechanism that involves phosphorylation of the cytosolic NADPH-oxidase subunit p47(phox).

CARDIAC & CARDIOVASCULAR SYSTEMS

Descargar la publicación

Una iniciativa de

Ministerio de Economía y Competitividad Fondo Europeo de Desarrollo Regional IMIM - Parc de Salut Mar