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The information provided by the alignment-independent GRid Independent Descriptors (GRIND) can be
condensed by the application of principal component analysis, obtaining a small number of principal properties
(GRIND-PP), which is more suitable for describing molecular similarity. The objective of the present study
is to optimize diverse parameters involved in the obtention of the GRIND-PP and validate their suitability
for applications, requiring a biologically relevant description of the molecular similarity. With this aim,
GRIND-PP computed with a collection of diverse settings were used to carry out ligand-based virtual screening
(LBVS) on standard conditions. The quality of the results obtained was remarkable and comparable with
other LBVS methods, and their detailed statistical analysis allowed to identify the method settings more
determinant for the quality of the results and their optimum. Remarkably, some of these optimum settings
differ significantly from those used in previously published applications, revealing their unexplored potential.
Their applicability in large compound database was also explored by comparing the equivalence of the
results obtained using either computed or projected principal properties. In general, the results of the study
confirm the suitability of the GRIND-PP for practical applications and provide useful hints about how they
should be computed for obtaining optimum results.

INTRODUCTION

For a long time it has been generally accepted that two
compounds with a high degree of chemical similarity are
likely to have similar biological properties. This statement,
albeit true in the vast majority of cases, has striking
exceptions, as it was shown in recent publications.1 These
exceptions are a consequence of the imperfect correspon-
dence between the concepts of chemical and biological
similarity; two compounds might share many structural
features but show disparities in a few of them, which play a
critical role for their interaction with a biological target.
Unfortunately, in most cases, the identity of these biologically
relevant features is unknown, and as a consequence, chemical
similarity does not guarantee biological similarity, in general
terms.

Often, the only hint about how to obtain novel compounds
with a certain biological property is a small set of compounds
already exhibiting this property. In this situation, it is
reasonable to assume that the probability to obtain com-
pounds with this biological property is higher in the
compounds showing structural similarity with the active
compound.2,3 This idea was at the basis of the ligand-based
virtual screening (LBVS) methods in which compounds of
unknown activity are ranked according to their similarity with
one or more known active compounds, which are used as
templates.4

One of the most critical aspects of LBVS methods is how
to describe the compound similarity. Ideally, the molecular
descriptors used should represent the aforementioned bio-

logically relevant features, since a structural description,
centered on describing the template chemotype, is likely to
select hits from the same structural family (i.e., if the template
is a beta-lactamic antibiotic every compound with a beta-
lactamic ring will be selected as an antibiotic). This is
inconvenient even when the selected hits are active because
LBVS aims to find compounds with some degree of
novelty.5,6 In this respect, 3D-based molecular descriptors
offer some advantages over 2D descriptors, since they make
no direct use of the template 2D structure and are less likely
to extract hits based on their chemotype. Moreover, when
more than one template compound is used, 3D-based
methods can identify common 3D structural features not
apparent in their 2D structure and use them for the search.
Therefore, the molecular descriptors used for a similarity
search in LBVS must represent biologically relevant proper-
ties but with the highest possible abstraction of the template
chemotype or, otherwise, the hits will be “too similar” to
the templates for being of interest.

The GRid-INdependent Descriptors (GRIND)7 are an
example of 3D-based molecular descriptors. They were
originally developed for 3D QSAR but have been applied
with success in other areas of drug design.8 In few words,
the GRIND are obtained starting from a collection of
molecular interaction fields (MIF) computed using diverse
chemical probes, which were discretized by finding the
more representative positions (hot spots). The relative
position of these hot spots was encoded into a few arrays
of values (correlograms), representing hot spots located
at certain distance ranges. Hence, every GRIND variable
represents couples of grid nodes, belonging to certain MIF
types, and separated by a certain distance range. For a* Corresponding author. E-mail: manuel.pastor@upf.edu.
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certain compound, the GRIND variable is assigned a value
of 0.0 when no such couple exists for the MIFs considered
or the product of their energy values when such couple
does exist. A detailed description of the algorithm used
for computing the GRIND was described elsewhere9 but,
as can be seen, the GRIND have the advantage of
providing a complete abstraction of the ligand chemotype,
and indeed, different 2D structures can produce very
similar MIF and GRIND. For this reason, providing
information relevant for representing the ligands molecular
interaction potential without making use of their chemo-
type, the GRIND are attractive descriptors for LBVS
applications. Indeed, a few applications of GRIND in
LBVS have been reported10,11 producing good results,
often remarked to be original with respect to the results
obtained with other methods.

One of the peculiarities of the GRIND is the intrinsic
redundancy of the variables obtained. The presence of any
structural feature is reflected in many variables simulta-
neously, often located in different correlograms.8 This is not
inconvenient for their application in 3D QSAR, since the
regression method applied (partial least-squares) is highly
insensitive to this problem. However, this characteristic could
be detrimental for the quantification of compound similarity
for two reasons: (i) the relative importance given to diverse
structural features depends on the level of redundancy of
the description, and (ii) they are not efficient both in terms
of storage and time required to compute similarity indexes
involving so many variables. For these reasons, it has been
suggested8 that the t-scores obtained with principal compo-
nent analysis (PCA) would be more suitable for molecular
similarity applications than the original variables and would
still retain the most relevant information related to their
biological properties.

The use of t-scores, also called principal properties (PP),
for replacing the original molecular descriptors is not new,
and early examples can be found in the characterization of
heteroaromatics12 or amino acids.13 A more recent example
is the use of t-scores for building chemical spaces14,15 where
large numbers of compounds can be localized according to
relevant physicochemical properties, providing a global
similarity metric. Such chemical spaces have been used with
success for practical purposes, like the identification of drug-
likeness regions or subset selection.

In the present work, we aim to explore the suitability of
PPs obtained from GRIND (GRIND-PP) for applications
which require a description of the molecular similarity. LBVS
was chosen to illustrate such applications here because it is
a technique well-known in the field of drug design, and there
are simple and reliable indexes to describe the quality of
the results. With this aim, preliminary studies were carried
out in order to investigate the effect of diverse method
parameters (like the number of PCA components, the scaling
and the size of the template sets) on the quality of the results
obtained. Then, the method was applied again, with optimum
settings, in order to evaluate the overall performance of the
method in practical applications. However, it is important
to remark that the main aim of the present work is not to
benchmark the new descriptors for LBVS applications but
to obtain a preliminary quality assessment, revealing their
generic suitability for molecular similarity applications.

In addition, properties of such t-scores spaces relevant
for their practical use will be tested, like the stability upon
addition of new compounds or compounds sets and the
suitability of projected t-scores spaces in LBVS applications.

MATERIALS AND METHODS

Data. The GRIND-PP were tested by carrying out LBVS
on several standard compound databases: WOMBAT (Word
of Molecular BioAcTivity),16 DUD, and ZINC.

WOMBAT is a database containing molecules collected
from articles published in medicinal chemistry journals since
1975. In this study the version 2007.v2, containing 203 924
chemical compounds, was used. In order to enrich the content
of lead-like compounds17 and obtain more realistic results,
compounds with a molecular weight lower than 450 and a
computed logP value (AlogP) below 5.5 were removed,17,18

thus, obtaining a set of 123 370 compounds. We made use
of the 2D to 3D conversion program CORINA 2.419 to
generate a single 3D conformation for each compound, using
default parameters. The conversion was possible for 123 276
compounds and produced diverse errors for 94 compounds,
which were discarded from the study. Database annotations
were used to extract active compounds (activity value over
6) for the following seven different targets: 5-HT3 antago-
nists, 5-HT1A agonists, D2 antagonists, angiotensin II AT1
antagonists, thrombin, HIV protease inhibitors, and protein
kinase C inhibitors. In order to select a suitable set of
templates for each target, the GRIND descriptors obtained
for every set of actives were exported to GOLPE,20 where
subsets of 5 and 10% representative compounds were
extracted using two alternative algorithms: MDC (most
descriptive compound)21 and LMD (longest minimum dis-
tance).22 In both cases, the selection was carried out in the
PCA t-scores space using 2 PC.

The DUD (Directory of Useful Decoys) database23 was
originally developed to provide a realistic assessment of
structure-based VS performance, even if it has been also used
for ligand-based VS.24 It contains 2 950 active compounds
against a total of 40 target proteins, and every ligand has 36
decoy molecules that are physico-chemically similar but
topologically distinct, leading to a database of 98 266
compounds. In this work, the database was used to run
separate LBVS for each target, using as templates a set of
either 5 or 10% of the active compounds, which were
selected using the MDC algorithm on the PCA t-scores space,
as described above for the WOMBAT data set. For each
target, the search was carried out on a database containing
only the decoys and the active compounds not included in
the template set.

ZINC is a free database of commercially available
compounds including around 8 million of compounds.25

In this work, we used only the drug-like subset (subset
#3, as defined in Zinc version 7), containing 2 066 906
drug-like compounds, as an example of a large compound
database.

GRIND. All the GRIND computed in this work cor-
respond to the next generation (GRIND-2) of alignment-
independent descriptors, developed around the idea of
GRIND7 but including some major improvements, like the
use of AMANDA,9 a novel MIF discretization algorithm
which offers several advantages over the original GRIND
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algorithm in terms of the speed of calculation and the quality
of the hot spots extracted. However, for the sake of
simplicity, they will be mentioned in the manuscript as
GRIND and not as GRIND-2. These new descriptors are
more suitable than the original GRIND for VS applications,
since they can be obtained for series containing highly
structurally dissimilar compounds without any manual
adjustment of the algorithm and are much faster to compute.
In this work, the GRIND-2 were obtained as implemented
in program Pentacle,26 using default settings (DRY, O, N1
and TIP probes, with 0.5 Å grid step, dynamic parametriza-
tion, default AMANDA MIF discretization and default
MACC2 with 0.8 smoothing window).

PCA. PCA is a multivariate analysis tool used for data
supervision and dimensionality reduction. The method has
been described elsewhere,27 but basically it works by
computing an approximated representation of the original
data matrix X in terms of the product of two matrices, the
matrix of objects T (scores) and variables P (loadings). In
the matrix T, every object is represented by a few number
of new variables (principal components, PC), which are a
linear combination of the original variables, chosen to explain
as much as possible the variance present in X. In this work,
PCA was applied on large matrices of GRIND descriptors
using in-house software written in ANSI-C, implementing
the original NIPALS algorithm.27 In all applications, the X
matrix was centered but not scaled.

Assessing the Performance. The quality of the LBVS
results obtained using diverse methods settings was quantified
using standard metrics like the ROC-derived enrichment
factor and, preferably, the BEDROC. A description of these
metrics together with a detailed discussion can be found in
recent reviews,28 but they will be briefly described here. The
enrichment factor (E)10 used in this work was obtained from
ROC curves by describing the percentage of area under the
curve (AUC) that is over the random ROC (a diagonal line)
and calculated as indicated by eq 1:

where AUC is the value of the area under the curve, AUCT

is the maximum value of the area under the curve (corre-
sponding to the result in which the n active compounds
correspond to the first n compounds selected), and AUCR is
the value of the area under the curve for a purely random
identification (0.5 was used). All area values were normal-
ized. According with this definition, the E value will range
between -1.0 and 1.0, the value of 0.0 corresponding to a
random identification. This metric was reported here because
it is conceptually simple and fast to compute but has the
disadvantage of being rather insensitive to the “early
recognition” of active compounds.

The BEDROC28 is a more sophisticated and reliable
metric, which emphasizes the early recognition of actives; a
higher value is obtained when the actives are recovered early.
The BEDROC is calculated using eq 2:

where n is the number of known active structures, N is the
number of inactive structures, ri is the rank of the ith active
structure, Ra is the ratio of active to inactive structures n/N.
The coefficient R is a weighting factor which controls the
weight assigned to the “early recognition”, and higher R
values displace the region of importance toward the begin-
ning of the ranked list. In the present work, the R value was
set to 32.2, according to the recommendations in ref 28.

Evaluating the Similarity between Different PCA
Spaces. The present work aims to validate the equivalence
of the LBVS results yielded by GRIND-PP obtained after
the application of PCA to the whole database and those
obtained by projecting the GRIND of the whole database
on a precalculated PCA model. The metric proposed here is
based on the assessment of the similarity between the lists
of hits obtained in VS searches, and therefore, GRIND-PP
spaces are considered equivalent if the application of LBVS
yields the same results. The procedure for comparing the
results obtained with settings A and B works as follows:
two lists with the 20 first compounds (an arbitrary small
number) were extracted, and the percentage of common
elements present in the topmost positions of both lists was
computed. As an additional indicator of the list similarity,
the order of extraction of the common elements in both lists
was compared by using the Spearman correlation coefficient,
obtaining values that range between 1.0, if the order of the
common elements is identical (including noncommon ele-
ments for calculating the ranks), and -1.0, if they were
extracted in reversed order. During the application of this
evaluation procedure, we found a small number of highly
similar compounds with identical GRIND-PP values, cor-
responding to database duplicates or equivalent compounds
(i.e., tautomers or enantiomers), the position of which within
the list is arbitrary. In these cases, and in order to avoid
artifactual results, elements which appear twice in the list
with identical GRIND-PP were removed from the analysis.
Please notice that both kind of indexes must be considered
together, and the A and B results can be considered similar
only if the percentage of common elements in the topmost
positions is high and the value of the Spearman correlation
coefficient is positive and close to 1.

Here, and in order to obtain an exhaustive analysis, every
single compound was used as a template in a separate LBVS
run, so the calculated and the projected results were
compared by using the aforementioned metrics averaged for
all the compounds in the database. In these LBVS runs, the
following settings, identified as optimum in the previous tests,
were used: 30 PC, minimum distance (the template is a single
compound), and original scaling.

RESULTS AND DISCUSSION

Optimization of the Method Setting for LBVS. As stated
before, LBVS results will be used as a tool for investigating

E ) (AUC - AUCR/(AUCT - AUCR) (1)

BEDROC )

∑
i)1

n

e-Rri/N

n
N(1 - e-R

eR/N - 1)
×

Ra sinh(R/2)

cosh(R/2) - cosh(R/2 - RRa)
+

1

1 - eR(1-Ra)
(2)
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the ability of the GRIND-PP to describe molecular similarity
with an emphasis on biologically relevant features. However,
before it can be applied with this purpose, the methodology
used for computing GRIND-PP must be optimized. It must
be remarked that, even if the application of the GRIND-PP
in VS is not new and some applications have been published,
no systematic study has ever explored the influence of some
parameters involved in their computation. In particular, it is
important to understand the effect of the t-scores space
dimensionality and the scaling of the t-scores in the quality
of the results obtained. Other parameters that might also
affect the results in LBVS (but not in other molecular
similarity applications) are those related with the template
selection (% templates and method used for selection), and
the method used to handle multiple templates. In this study,
we run a large number of LBVS queries in which the
parameters were systematically changed according to a full
factorial pattern. For each run, the quality of the results was
evaluated using the E and BEDROC parameters (computed
as described in the Methods Section), and finally, the effect
of every method’s settings on the quality was estimated using
ANOVA.

LBVS queries were carried out trying to simulate realistic
conditions. The initial round of tests were run on
WOMBAT16 using seven subsets of compounds with sig-
nificant biological activity against known targets (see Table
1). Full details about the filtering of the database and the
selection of the subsets were provided in the Methods
Section.

GRIND descriptors were computed for all the compounds
in the WOMBAT data set, obtaining 930 variables. Principal
component analysis (PCA) was applied to this matrix,
extracting an excess of 50 principal components (PC), which
explained more than 85% of the variance. For every target,
a small subset of the active compounds (of about 5 or 10%
of the original size) was extracted and used as template
structures. The choice of the templates was made, trying to
include representatives from the diverse structural class
present in the set of active compounds, by using two different
subset selection algorithms, the longest minimum distance
(LMD)22 and the most descriptive compound (MDC).21

The query run using this template set extracted compounds
from the database according to their similarity with the
templates in terms of Euclidean distances in the t-scores
space. Since the template set contains more than one
compound, this scoring distance can be computed as the
minimum distance with any of the compounds in the template
set or as the distance to the whole template set, represented
by the centroid of all the compounds. Both options were
tested in our study. In any case, compounds were selected
according to distances, and therefore, the scaling applied to
the t-scores can be expected to have a large impact on the

results. It has been previously hypothesized8 that the use of
the original PC scaling might produce unrealistic similarity
scores due to the high degree of redundancy present in the
GRIND descriptors. The application of a simple PC nor-
malization (often called PC whitening29) will be able to
remove this redundancy, and the Euclidean distances on the
scaled scores will be equivalent to Mahalanobish distances.
A more advanced alternative is to apply a scaling adjusted
ad hoc for the series, using the following method: when the
template set contains more than one compound, the PCj can
be scaled by a factor which reflects both the ratio of the
dispersion within the template set and the overall dispersion
in the database (eq 3):

From its definition, the ratio will be large for PC, which
discriminates well template-like compounds from other
compounds, and therefore, when used as a scaling factor, it
will enhance the weight of such “good” PC in the computa-
tion of the distances. In the present study, the influence of
the scaling in the quality of the LBVS results was tested by
applying the three aforementioned scaling schemes to the
PC: no-scaling, normalized, and ratio.

The effect of the aforementioned parameters in the final
quality of the results was tested by carrying out a systematic
analysis in which the values of these parameters were set
according to a full factorial experimental plan, summarized
in Table 2, including a total of (2 × 2 × 2 × 3 × 2) LBVS
queries for each of the seven targets listed in Table 1.

The quality of the results was quantified using E and
BEDROC (see Methods Section). In general, the quality
indexes exhibit a large variability. For the BEDROC values,
the average value for all the targets was 0.32, but with a
large SD of 0.21, stressing the importance of using appropri-
ate method settings for obtaining good results. In order to
extract objective conclusions, the data were imported to SPSS
12.030 and analyzed using ANOVA with BEDROC as a
dependent variable and assuming a model with main effects
only. The effects obtained were listed in Table 3, including
the optimum values for all the settings studied.

Table 1. Targets Studied in WOMBAT Database

target name no. actives no. templates (10%) no. templates (5%)

5-HT3 1166 117 56
5-HT1A 3501 351 176
D2 3350 335 168
AT1 894 90 45
thrombin 850 85 43
HIV-1 P 184 19 10
PKC 166 17 9

Table 2. Number of Levels and Values Tested in the Full Factorial
Experimental Plan Used in WOMBAT

variable no. levels values

template selection method 2 MDC, LMD
template set size 2 5%, 10%
multiple template handling 2 minimum distance, centroid
PC scaling 3 no scaling, normalize, ratio
PC number 2 10, 25

Table 3. Statistical Significance of the Main Effects and Best
Value Settings

variable F p best value

target 201.6 <0.001 AT1
template selection method 154.7 <0.001 MDC
template set size 32.4 <0.001 10%
multiple template handling 698.7 <0.001 minimum
PC scaling 1.2 0.294a ratioa

PC number 10.0 0.002 25PC

a Nonsignificant effect at 95% CI.

Ratioj ) SDj database/SDj templates (3)

2132 J. Chem. Inf. Model., Vol. 49, No. 9, 2009 DURÁN ET AL.
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The results show that the more important effect is the
multiple templates handling method, followed in importance
by the target set, the template selection method, and the
template set size. Remarkably, the effect of the PC scaling
was not statistically significant, and the number of PC ranked
last in importance.

In this study, the settings related with how the template
set is built seem to be critically important, showing that the
best results were obtained when the template set was large
(10%) and was selected using the MDC algorithm. In both
cases, the best results are obtained when the settings increase
the chances of incorporating in the template set of repre-
sentatives for all the chemotypes present in the active set.
This is not surprising in a ligand-based method and can be
explained by the structural richness present in the WOMBAT
database in which the active sets often contain several highly
dissimilar structures.

The most statistically significant effect found in the study
was the choice of method used to handle multiple templates;
in all instances, the best results were obtained using the
minimum distance scoring. This finding is consistent with
previously reported results,31 and it can be justified here by
the presence of well-defined structural families in all the sets
of active compounds. Algorithms based on the centroid of a
set of bioactive structures could be expected to perform better
when the templates are not too structurally diverse. Besides,
the use of the centroid can serve to base the similarity search
in common structural features, not necessarily associated to
a certain chemotype and present in all the members of the
template set. The results from this kind of search can be
more useful in terms of the originality of the compounds
found, but in a study like the present (with active compounds
belonging to defined chemotypes), there is a high chance
that the compounds extracted were not recognized as active
and, therefore, ranked low in terms of BEDROC or E.

With respect to the PC scaling method, contrarily to our
expectation, the statistical analysis did not detect any
significant relationship, thus indicating that no setting is
producing consistently good results in all the runs. A detailed
analysis shows that in most cases the best results were
obtained with either original or ratio scaling, even if the
differences in the BEDROC values obtained with the dif-
ferent methods were not large. It is remarkable that the results
contradict our previous statement regarding the detrimental
effect of the redundancy present in the original descriptors.

Also interesting, from a practical point of view, is the
effect of the number of PCs included in the search. In the
analysis, the best results were consistently obtained with 25
PC, in contrast with previous applications of GRIND-PP
where a much smaller number of PC was used; 3 scaled PC
in10 and 2 unscaled PC in11 probably justifying the discrete
quality of the results reported. Based on these results, we
decided to investigate the effect of the number of PC in more
detail, widening the range of PC explored and carrying out
additional runs using from 5 to 50 PC in 5 PC intervals and
setting the rest of the parameters to their optimal values
(MDC algorithm, 10%, minimum distance score and ratio
scaling) for three selected targets (5-HT3, thrombin, and
HIV-1 P). The results are shown in Figure 1a, representing
the BEDROC versus the number of PC, which indicate that
the optimum BEDROC values were obtained with 25-30
PC. Probably the BEDROC depends on the percentage of X

variance explained by a certain number of PC more than on
the number of PC, and therefore, in order to make the results
more general, the same quality indexes were represented
versus the variance explained in Figure 1b. This graph shows
that the optimum results were obtained when the GRIND-
PP explain between 75 and 80% of the variance present in
the original matrix. It should be noticed, also, that the
addition of more PC does not increase indefinitely the quality
of the results; there is an optimum dimensionality for every
target.

All the results obtained from this study can be used to
define a set of optimum method settings. However, all the
LBVS queries used to derive them were carried out in a
single database, and it would be sensible to check their
general applicability by running additional queries on dif-
ferent databases. With this aim, our systematic study was
extended by using the DUD database.23 Unlike WOMBAT,
DUD was specifically developed to test the performance of
structure-based VS methods (see Methods Section for
details). For this study, the template sets were built using
the same methodology described for the WOMBAT data set,
and the LBVS queries were run on a database containing
the rest of the active compounds plus the decoys defined for
the corresponding target (see the Methods Section for details).

Figure 1. BEDROC values obtained for a few representative
WOMBAT targets (HIV-1 P, thrombin, 5-HT3) plotted against the
number of PC (a) and the X variance explained (b).
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The name of the targets, the number of active compounds,
and the size of the template sets are detailed in Table 4.

With respect to the method, some of the settings clearly
identified as highly influential in the previous section
(template selection method, and multiple template handling)
were set fixed to their optimum values (MDC, and minimum
distance). Conversely, the template sets size, the scaling, and
the number of PC were changed systematically, as sum-
marized in Table 5, resulting in a full factorial design of 2
× 2 × 10 runs per target.

The results obtained in terms of BEDROC with the
different settings for the 40 targets were analyzed using
ANOVA, as described for the WOMBAT data set. The
statistical significance of the main effects and the optimum
values for each setting are shown in Table 6.

The variability observed for the different targets was rather
high, and the differences are statistically significant. The

highest BEDROC values were obtained for dhfr (0.92). As
obtained for WOMBAT, the template set size is an important
method setting, and the best results were obtained with the
largest value (10%), probably for the same reasons discussed
above. The PC scaling method follows in importance. Here,
the effect is statistically significant, and the best results were
clearly obtained with the original scaling, instead of the ratio
scaling. One of the possible reasons explaining the differ-
ences observed in WOMBAT and DUD with respect to this
effect is the much smaller size of the template sets used in
DUD (see Tables 1 and 4). The ratio scaling was based on
the dispersion of the PP values for the compounds belonging
to the template set, and when this set is very short, the scaling
does not seem to behave as well as for larger template sets.

With respect to the number of PC, the effect observed was
more statistically significant than the effect observed in
WOMBAT, probably because here the experiments covered
from the beginning a wider range of PC (from 5 to 50 in 5
PC intervals). Remarkably, there is also an optimum
dimensionality, and the quality, in terms of BEDROC, does
not grow linearly with the number of PC, reaching a
maximum between 20 to 30 PC. The relationship between
the performance and the dimensionality was also studied
using the percentage of X variance explained, as reported
for WOMBAT, finding that the optimum values were
obtained when the GRIND-PP explains between 70 and 80%
of the original matrix variance. The results for the 10 targets
with the highest BEDROC are represented in Figure 2.

These results further confirm the importance of choosing
the right number of PC for obtaining good results as well as
the relative stability of the optimum dimensionality. In
general, for the data sets explored, the optimum dimensional-
ity is around 20-30 PC or the number required to explain
between 70 to 80% of the X variance. Even if the optimum
value can vary for different databases and queries, any value
within this range guarantees a reasonable method perfor-
mance, unlike the very short values used in prior GRIND-
PP applications.

GRIND-PP Performance Test. The results obtained with
optimum settings for the WOMBAT and the DUD data sets,
reported in the previous section, provided a first quantifica-
tion of the GRIND-PP performance in LBVS applications
(see Table 7 and Figure 3).

In WOMBAT, the BEDROC values rank from 0.41 for
PKC to 0.81 for AT1, with an average value of 0.56.
According with the meaning of the BEDROC scores, the
method behaves well in terms of its early recognition
capabilities, being able to extract a significant percentage of
the active compounds in the top 5% of the hits.

In DUD, the average BEDROC value obtained for all the
targets is very similar (0.55), thus allowing to draw similar
conclusions even if the values exhibit a wider span from
0.17 (cox1) to 0.92 (dhfr). This result is remarkable if we

Table 4. Targets Studied in DUD Database

name no. actives no. templates (5%) no. templates (10%)

ace 49 3 5
ache 107 6 12
ada 39 2 4
alr2 26 2 3
ampc 21 2 3
ar 79 4 8
cdk2 72 4 8
comt 11 1 2
cox1 25 2 3
cox2 426 22 43
dhfr 410 21 41
egfr 475 24 48
er_agonist 67 4 7
er_antagonist 39 2 4
fgfr1 120 6 12
fxa 161 8 15
gart 40 2 4
gpb 52 3 6
gr 78 4 8
hivpr 62 4 7
hivrt 43 3 5
hmga 35 2 4
hsp90 37 2 4
inha 86 5 9
mr 15 1 2
na 49 3 5
p38 454 23 46
parp 35 2 4
pde5 88 5 9
pdgfrb 170 8 17
pnp 50 3 5
ppar_gamma 85 5 9
pr 27 2 3
rxr_alpha 20 1 2
sahh 33 2 4
src 159 8 16
thrombin 72 4 8
tk 22 2 3
trypsin 49 3 5
vegfr2 88 5 9

Table 5. Number of Levels and Values Tested in the Full Factorial
Experimental Plan Used in DUD

variable no. val values

template set size 2 5%, 10%
PC scaling 2 no scaling, ratio
PC number 10 5-50, in 5 unit steps

Table 6. Statistical Significance of the Main Effects and Best
Values Settings

variable F p best value

target 171.3 <0.001 dhfr
template set size 533.0 <0.001 10
PC scaling 283.9 <0.001 original
PC number 18.0 <0.001 30
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take into account the high content of decoy structures in this
latter database, in particular for a ligand-based VS method.
In both cases, the method compares well with other state-
of-the-art methods,32 even if the differences in the quality
testing methodology do not allow a direct numerical com-
parison of the metrics.

In any case, as stated before, the aim of the present work
is not to carry out a comparative analysis of the GRIND-PP
with other methods in LBVS but to evaluate, in general, the
suitability of the GRIND-PP for representing molecular
similarity. It is our belief that such analysis should not be

only limited to compare ROC curves and enrichment values
but must also incorporate the potentialities of this 3D-based
similarity method to extract original structures and include
a detailed analysis of the topmost structures obtained using
diverse methods. This study is currently in progress in our
group and will be submitted in due course.

Stability of the GRIND-PP Spaces. The applicability
GRIND-PP in fields like LBVS is not related only with the
quality of the results obtained and but also depends on
technological and practical issues. In this respect, it is
important to consider if these descriptors can be used for
characterizing extremely large databases. Today, databases
containing several million compounds are not uncommon,
particularly in corporate environments. Most PCA software
is not ready to handle matrices with so many objects, and
even if special software is applied, the process would be slow
and not suitable for being applied after every database update.
However, in most cases, the addition of a few new
compounds to a large X matrix is unlikely to change the
results of the PCA, provided that the new compounds do
not contain extremely different structural or physicochemical
features. Indeed, in our experience, the PCA t-scores spaces
obtained for large collections of compounds are relatively
stable, and the values of the t-scores assigned to the new
compounds after the PCA are very similar to the projected
t-scores (Tp) which could be obtained very simply, as
described by eq 4

where Tp are the projected t-scores, X is the matrix containing
the (centered) descriptors for the new compounds, and P the
p-loadings of a precomputed PCA model.

This observation suggests that it would be possible to build
t-scores spaces by carrying out PCA on a “core data set” of
compounds and then expanding the space simply by applying
eq 4 to new compounds, without the need of recomputing

Figure 2. BEDROC values obtained for 10 representative DUD
targets (cox2, dhfr, gart, hsp90, me, p38, pnp, ppar_gamma,
thrombin, and trypsin) plotted against the number of PC (a) and
the percentage of X variance explained (b).

Table 7. Summary of the Results Obtained with the Best Method
Settings

WOMBAT DUD

E min. 0.54 0.02
max. 0.95 0.92
average 0.74 0.55
median 0.75 0.58
SD 0.13 0.24

BEDROC min. 0.41 0.17
max. 0.81 0.92
average 0.56 0.55
median 0.55 0.54
SD 0.14 0.17

Figure 3. Values of BEDROC obtained for diverse targets in
database WOMBAT (top) and DUD (bottom). See text for details.

Tp ) XP (4)
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the PCA for the whole database. A similar approach was
used with success by Oprea for obtaining a “chemspace map”
(ChemGPS) with diverse applications in the field of drug
discovery.14

As a part of the present study, we decided to validate the
suitability of the projected t-scores for replacing PCA
computed t-scores in LBVS applications. A numerical
comparison of the t-scores would not be useful, since their
equivalence for characterizing molecular similarity depends
only on how well the relative distances between the
compounds is preserved. For this reason, the test was based
on carrying out LBVS using both kinds of GRIND-PP and
comparing the results obtained, with an special emphasis on
the topmost compounds.

The first test was run on a large subset of the Zinc
database. The objective was to test the similarity of the results
obtained with original GRIND-PP computed after a PCA
on the whole set and the GRIND-PP obtained by projecting
the GRIND of core databases of diverse size. The procedure
started by selecting randomly 100 000 compounds from the
Zinc database (see Method Section for details), computing
GRIND, and obtaining regular GRIND-PP (t-original) for
them. Then, five subsets of 1 000, 5 000, 10 000, 25 000,
and 50 000 compounds were randomly selected, and five
different core PCA models were obtained. These were used
to project the GRIND of the 100 000 compound set, thus
obtaining five projected GRIND-PP (t-1K, t-5K, t-10K,
t-25K, and t-50K). The potential equivalence of such t-spaces
for being applied in LBVS applications was thoroughly tested
by carrying out a VS query for every compound in the data
set in which this compound was used as template, and a
ranked list of the 20 more similar compounds was extracted
(see Method Sections for details). For every compound, the
lists obtained in the projected t-spaces were compared with
those obtained in t-original, and their similarity was quanti-
fied using different indexes, described in detail in the Method
Section.

Table 8 shows that the results obtained with the projected
t-scores are, in general, rather similar to those obtained in
t-original. Even for the smaller subset (t-1K), the first hit is
found as the first or the second hit in 95% of cases. The
comparison of the results obtained projecting in t-10K (10%
of the original size) shows that the first hit is identical in
both lists in 92% of cases and the first or the second in a
99% of cases. The high percentages of common hits and
the large Spearman correlation coefficient obtained also
indicates that the correspondence is rather general for all the
list members and does not affect only the topmost. All in
all, these results confirm our prior experience and avail the
use of projected GRIND-PP for LBVS.

Against this conclusion it can be argued that the subsets
were selected randomly from the database, and therefore,
they can be considered random samples of the same chemical
space. In pharmaceutical industry, compound databases are
often enriched with batches of compounds belonging to novel
projects, and therefore, the chemical space represented by
the database will diverge more and more from the original
one from which core data sets were extracted. In order to
test this scenario, a second test was run in which the whole
WOMBAT database was projected using subsets of 50 000
and 100 000 compounds extracted from the Zinc database.
Figure 4 represents the WOMBAT database using the first
and second PC of the t-original (4a) and the projected t-5K
(4b). In both plots, the shape of the database is rather similar,
but the projected t-scores appear slightly rotated with respect
to the original. The effect of these differences in the relative
distances between the compounds cannot be appreciated by
visual inspection of the plots and require a comparison of
the LBVS results.

The procedure used for the comparison of the original and
the projected t-scores was identical to the method used in
the previous run. The results were shown in Table 8 and are
clearly worse than those obtained for compounds of the same
database. However, even for the smaller data set tested
(50 000 compounds), the first hit is found as the first or the
second hit in 93% of the cases, the mean percentage of
common hits is over 83%, and the Spearman correlation
coefficient is rather high. In our opinion, the results indicate
that the projected t-scores spaces are reasonably stable, and
the projection methodology can be safely used as a fast
method to update GRIND-PP databases, in most cases.
However, the addition of novel compounds representing
diverse chemical spaces can deteriorate progressively the
quality of the values obtained, and therefore, the core data
set must be updated from time to time before it wears out.

Table 8. Similarity between the Results Obtained with Complete
T-Scores and Projected T-Scores Obtained from Core Sets of
Diverse Sizes

database core size Spearman % common % first % first-sec.

Zinc 1000 0.819 85.5 83.8 94.9
5000 0.917 91.6 89.4 97.7

10000 0.946 93.8 91.9 98.5
25000 0.976 96.4 95.3 99.5
50000 0.986 97.5 96.8 99.8

WOMBAT 50000 0.806 83.2 83.5 92.7
100000 0.823 84.5 84.9 93.6

Figure 4. Scatterplot representing the WOMBAT databases, using
the first and second PC, obtained from (a) a complete PCA and (b)
a projection on model obtained with a core database of 50 000 zinc
compounds.
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CONCLUSIONS

The results obtained confirm that the GRIND-PP are
promising molecular descriptors for applications requiring
a biologically relevant representation of compound similarity.
The application of PCA compacts the original GRIND into
a few number (20-30) of information rich PC and is easy
to store and to apply in many computational methods. The
study shows that optimum results in some typical applications
can be obtained with a limited number of PC, which can be
easily assessed by the percentage of variance explained
(around 70-80%) and does not grow indefinitely. For LBVS
applications the best results were obtained using GRIND-
PP without any scaling or with an ad-hoc ratio scaling,
contradicting previous statements recommending the ap-
plication of normalization. These conclusions can probably
be extended to other t-scores descriptors derived from other
kinds of molecular descriptors.

With respect to the suitability of the GRIND-PP for being
used in large collection of compounds, the results obtained
showed that the PP can be obtained in a simple and fast
way from projection on a core PCA model obtained for a
small set of representative compounds. The properties of the
projected descriptors were thoroughly compared with the
PCA derived ones in terms of the results obtained with both
in VS applications. In general, the results support the use of
the projected PP in practical applications, provided that the
core PCA model was obtained using a set with enough
compounds (around 10% or the full database size), which
are reasonably similar to the projected compounds.

Most of the above investigations were carried out using
LBVS as a reference technique, requiring an accurate
description of the compound similarity. The testing allowed
a fine-tuning of the method parameters for obtaining good
results in terms of high BEDROC and provided a first
evaluation of the performance of the method. However, the
true relevance of these results to assess the performance of
GRIND-PP in LBVS has to be considered with care because
the standard quality indexes used here do not reflect the
originality of the structures extracted and are biased by
the fact that the active compounds often belong to the same
chemotype than the templates. Therefore, the results reported
here reflect mainly the ability of the GRIND-PP to describe
generic molecular similarity, including nonbiologically rel-
evant chemotype features, which defines the bottom-line of
the descriptors quality. Even under these nonfavorable testing
conditions, the t-scores space performed well, obtaining
results which can be compared with other state-of-the-art
methods. A more complete study, specifically aimed to
validate the usefulness of the proposed methodology for
obtaining original hits, is now in progress, and the results
will be reported in due term.

Future developments of this work will involve the testing
and validation of GRIND-PP for diverse purposes. Among
them, structure masking33 appears like a highly interesting
application for which the GRIND-PP have unique properties.
Good masking descriptors must encode chemical structure
into biologically relevant descriptors from which it would
not be possible to guess the original structure. In this respect,
the GRIND-PP are not only highly relevant for representing
biological properties, the peculiarity of being obtained using
a PCA projection makes the resulting t-scores impossible to

revert into the original GRIND without the p-loadings of
the core PCA data set. Therefore, as far as this information
is kept confidential the t-scores cannot be reverse engineered
to guess the compound structure. It must be emphasized that
this is not only a technological barrier; during the projection,
only a certain percentage of the GRIND is retained (between
70 and 80% for optimum results), while the remaining
information is irreversibly lost, thus making a backprojection
virtually impossible.

All in all, the results of this work provide very useful
information regarding the application of GRIND-PP for the
description of molecular similarity and demonstrate that they
produce results at least comparable with other state-of-the
art methods in LBVS. This is a first step before they can be
applied for drug design tasks requiring an accurate and a
biologically relevant description of the molecular similarity
and exploiting the unique properties of these descriptors.
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